Genotypic and Phenotypic Characterization of Clinical Isolates of Staphylococcus aureus for Biofilm Formation Ability
نویسندگان
چکیده
Received: Revised: Accepted: 2014–02–18 2014–03–02 2014–03–02 The objective of the study was to characterize Staphylococcus aureus (S. aureus) isolated from human and animal clinical cases for their biofilm formation ability by genotypic and phenotypic methods. A total of 130 S. aureus strains isolated from human wound (n = 20), animal wound (n = 70) and animal mastitis (n = 40) cases were subjected to screening for 3 different biofilm associated genes (bap, icaA and icaD) and for phenotypic assessment for biofilm formation using Congo red agar, modified Congo red agar and microtitre plate assay. PCR assays were standardized for the detection of bap, icaA and icaD genes. The results indicated that icaA gene was present in 51.15% of the isolates and bap gene was present in 8.46% isolates. None of the isolates were positive for icaD gene. Human isolates (65%) had higher occurrence of icaA gene in comparison to animal isolates (49.09%). Dog wound isolates had higher occurrence of bap gene. Of the 3 methods used for phenotypic expression of biofilm by S. aureus isolates modified Congo red agar method showed 86.92% isolates to be positive, whereas by Congo red agar method only 63.07% S. aureus were found to be biofilm producer. Microtitre plate assay showed 75.38% S. aureus isolates to be biofilm producers. A good correlation was observed between genotypic and phenotypic biofilm formation ability of the isolates. Bap gene contained isolates showed higher biofilm producing ability compare to icaA gene harbored isolates. All copyrights reserved to Nexus® academic publishers
منابع مشابه
Biofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria
Abstract Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate a...
متن کاملBiofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus
Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...
متن کاملDetection of Intracellular Adhesion (ica) and Biofilm Formation Genes in Staphylococcus aureus Isolates from Clinical Samples
Background: The nosocomial infections that cause the establishment of biofilms on the embedded biomedical surfaces are the leading cause of sepsis and are often related to colonization of implants by Staphylococcus epidermidis. Materials and Methods: A total of 40 clinical S. aureus isolates were collected from Zabol, Iran. The ability of these strains to form biofilm was determined by microli...
متن کاملCharacterization of biofilm formation and virulence factors of Staphylococcus aureus isolates from paediatric patients in Tehran, Iran
Objective(s): Staphylococcus aureus can cause several infections. Its capability to form biofilm has been reported to be a vital property involved in the bacteria’s pathogenesis. Various genes contributing to biofilm formation have not yet been completely clarified. This study was designed to evaluate the factors influencing adherence and biofilm formation in S. aureus...
متن کاملPhenotypic Investigation of Biofilm Formation and the Prevalence of icaA and icaD Genes in Staphylococcus epidermidis Isolates
Background and Aims: The most important factor for pathogenicity of Staphylococcus epidermidis is the ability to produce biofilm. Identification of biofilm-forming strains using an appropriate method and recognizing the mechanisms of biofilm formation can help understand the proper use of artificial medical equipment and prevent increased drugs resistance . The aim of this study was to 1) evalu...
متن کامل